Mensys Online Shop

Practical Machine Learning: A New Look at Anomaly Detection - eBook (EPUB)

Categorie:Algemeen - Digitale Boeken (eBoeken) Van:O'REILLY MEDIA
Auteur(s):Dunning, Ted; Friedman, EllenBladzijden:66
Publicatie-jaar:2014 

Finding Data Anomalies You Didn't Know to Look For

Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what “suspects” you’re looking for. This O’Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work.

From banking  » Lees meer...

Practical Machine Learning: A New Look at Anomaly Detection - eBook (EPUB)

Selecteer een of meer artikelen en klik dan op Bestellen. Aantallen kunnen op de volgende blz. gewijzigd worden.
 Practical Machine Learning: A New Look at Anomaly Detection
Partnr.OmschrijvingEuro *Euro incl. BTW 
9781491914175 Practical Machine Learning: A New Look at Anomaly Detection 1ed. EPUB314.0517.00

Alle prijzen zijn in Euro excl. BTW (21%, voor boeken 6%) en excl. verzendkosten.
Verzenden is gratis bij orders boven de 20 euro in Nederland, daaronder 5 euro excl. BTW.

E-mail of bel 085 40 19 16 0 voor licenties, upgrades en andere vragen.

Finding Data Anomalies You Didn't Know to Look For

Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what “suspects” you’re looking for. This O’Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work.

From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project.

  • Use probabilistic models to predict what’s normal and contrast that to what you observe
  • Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm
  • Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model
  • Use historical data to discover anomalies in sporadic event streams, such as web traffic
  • Learn how to use deviations in expected behavior to trigger fraud alerts