Mensys Online Shop

Machine Learning for Email - eBook (EPUB)

Categorie:Algemeen - Digitale Boeken (eBoeken) Van:O'REILLY MEDIA
Auteur(s):Drew Conway, John WhiteBladzijden:146
Publicatie-jaar:2011 

If you’re an experienced programmer willing to crunch data, this concise guide will show you how to use machine learning to work with email. You’ll learn how to write algorithms that automatically sort and redirect email based on statistical patterns. Authors Drew Conway and John Myles White approach the process in a practical fashion, using a case-study driven approach rather than a traditional math-heavy presentation.

This book also includes a short tutorial on using  » Lees meer...

Machine Learning for Email - eBook (EPUB)

Selecteer een of meer artikelen en klik dan op Bestellen. Aantallen kunnen op de volgende blz. gewijzigd worden.
 Machine Learning for Email
Partnr.OmschrijvingEuro *Euro incl. BTW 
9781449320706 Machine Learning for Email Spam Filtering and Priority Inbox 1ed. EPUB39.9212.00

Alle prijzen zijn in Euro excl. BTW (21%, voor boeken 6%) en excl. verzendkosten.
Verzenden is gratis bij orders boven de 20 euro in Nederland, daaronder 5 euro excl. BTW.

E-mail of bel 085 40 19 16 0 voor licenties, upgrades en andere vragen.

If you’re an experienced programmer willing to crunch data, this concise guide will show you how to use machine learning to work with email. You’ll learn how to write algorithms that automatically sort and redirect email based on statistical patterns. Authors Drew Conway and John Myles White approach the process in a practical fashion, using a case-study driven approach rather than a traditional math-heavy presentation.

This book also includes a short tutorial on using the popular R language to manipulate and analyze data. You’ll get clear examples for analyzing sample data and writing machine learning programs with R.

  • Mine email content with R functions, using a collection of sample files
  • Analyze the data and use the results to write a Bayesian spam classifier
  • Rank email by importance, using factors such as thread activity
  • Use your email ranking analysis to write a priority inbox program
  • Test your classifier and priority inbox with a separate email sample set