Mensys Online Shop

Data Science from Scratch

Categorie:Algemeen - Digitale Boeken (eBoeken) Van:O'REILLY MEDIA

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.

If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and  » Lees meer...

Data Science from Scratch

Selecteer een of meer artikelen en klik dan op Bestellen. Aantallen kunnen op de volgende blz. gewijzigd worden.
 Data Science from Scratch
Partnr.OmschrijvingEuro *Euro incl. BTW 
9781491904398 Data Science from Scratch First Principles with Python 1ed. EPUB325.2130.50
9781491904404 Data Science from Scratch First Principles with Python 1ed. PDF25.2130.50

Alle prijzen zijn in Euro excl. BTW (21%, voor boeken 6%) en excl. verzendkosten.
Verzenden is gratis bij orders boven de 20 euro in Nederland, daaronder 5 euro excl. BTW.

E-mail of bel 085 40 19 16 0 voor licenties, upgrades en andere vragen.

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.

If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.

  • Get a crash course in Python
  • Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
  • Collect, explore, clean, munge, and manipulate data
  • Dive into the fundamentals of machine learning
  • Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
  • Explore recommender systems, natural language processing, network analysis, MapReduce, and databases