Mensys Online Shop

Anonymizing Health Data - eBook (PDF)

Categorie:Algemeen - Digitale Boeken (eBoeken) Van:O'Reilly Media
Auteur(s):Emam, Khaled El; Arbuckle, LukBladzijden:212
Publicatie-jaar:2013 

With this practical book, you will learn proven methods for anonymizing health data to help your organization share meaningful datasets, without exposing patient identity. Leading experts Khaled El Emam and Luk Arbuckle walk you through a risk-based methodology, using case studies from their efforts to de-identify hundreds of datasets.

Clinical data is valuable for research and other types of analytics, but making it anonymous without compromising data quality is tricky. This book  » Lees meer...

Anonymizing Health Data - eBook (PDF)

Selecteer een of meer artikelen en klik dan op Bestellen. Aantallen kunnen op de volgende blz. gewijzigd worden.
 Anonymizing Health Data - eBook (PDF)
Partnr.OmschrijvingEuro *Euro incl. BTW 
9781449363055 Anonymizing Health Data - eBook (PDF) Case Studies and Methods to Get You Started (digitale levering)15.2518.45

Alle prijzen zijn in Euro excl. BTW (21%, voor boeken 6%) en excl. verzendkosten.
Verzenden is gratis bij orders boven de 20 euro in Nederland, daaronder 5 euro excl. BTW.

E-mail of bel 085 40 19 16 0 voor licenties, upgrades en andere vragen.

With this practical book, you will learn proven methods for anonymizing health data to help your organization share meaningful datasets, without exposing patient identity. Leading experts Khaled El Emam and Luk Arbuckle walk you through a risk-based methodology, using case studies from their efforts to de-identify hundreds of datasets.

Clinical data is valuable for research and other types of analytics, but making it anonymous without compromising data quality is tricky. This book demonstrates techniques for handling different data types, based on the authors’ experiences with a maternal-child registry, inpatient discharge abstracts, health insurance claims, electronic medical record databases, and the World Trade Center disaster registry, among others.

  • Understand different methods for working with cross-sectional and longitudinal datasets
  • Assess the risk of adversaries who attempt to re-identify patients in anonymized datasets
  • Reduce the size and complexity of massive datasets without losing key information or jeopardizing privacy
  • Use methods to anonymize unstructured free-form text data
  • Minimize the risks inherent in geospatial data, without omitting critical location-based health information
  • Look at ways to anonymize coding information in health data
  • Learn the challenge of anonymously linking related datasets